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Abstract. Efficient assembly lines aim to achieve a shorter makespan to meet customer demands by 

reducing delivery times. Equally important is the balancing of the workloads of stations to prevent 

worker overload and to ensure a smooth production flow. Nonetheless, minimizing the makespan and 

balancing the workload are two conflicting objectives in the presence of learning, as a shorter 

makespan requires an unbalanced workload distribution. This study introduces a Mixed Integer Linear 

Programming (MILP) model to analyze the tradeoff between makespan and balanced workload. Using 

a practical problem, the possible compromises of the two conflicting objectives are explored, and 

valuable insights for managerial decision-making are provided. 

 
Keywords: Assembly line balancing, learning effect, learning curve, operations management, 

mathematical programming. 

1. Introduction 

Assembly lines are flow-oriented production systems with workstations arranged along a 

conveyor belt. Parts are gradually assembled by moving from station to station. The 

complete work to make a product is split into simple, indivisible operations called tasks. 

Balancing an assembly line implies assigning tasks to workstations to improve one or more 

performance metrics without violating precedence relations between the tasks. Since 

assembly line tasks are intrinsically repetitive, task times decrease with repetition due to the 

effect of learning, especially in small to medium batch production of up to a few hundred 

units [3]. The growing demand for product customization drives the significance of small 

lot size production compared to mass production, underscoring the importance of the effect 

of learning in assembly lines [1]. 
One of the objectives of assembly line balancing (ALB) is to minimize the makespan. 

The makespan (Also referred to as throughput time or total production time) is the time 

necessary to complete a predetermined production batch. Achieving a shorter makespan 

implies a shorter delivery time for orders. Another critical measure is the workload 

distribution among the stations. A balanced workload reduces the risk of worker’s overload 

and contributes to a smoother production flow [7]. In the presence of learning, however, 

minimizing the makespan and balancing the workload among the stations are two 

conflicting objectives as a  smaller makespan requires an uneven workload allocation across 

the stations [2]. This paper aims to identify an optimal workload distribution strategy that 
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minimizes the makespan and workload disparity among stations when the effect of learning 

is considered.  

The remainder of this paper is structured as follows: Section 2 outlines the formulation 

of a MILP model designed to minimize the makespan within a specific workload difference 

range. Section 3 demonstrates the application of the model with the help of a benchmark 

problem and discusses the obtained results. Finally, the main results are summarized, and 

some conclusions are given. 

2. Formulation of the model 

Three MILP models are used to calculate the possible combinations of optimal makespan 

and workload spread, where the workload range (R) defined by the difference between the 

minimum and maximum initial station times describes the workload spread. The notation 

used in the following part of the paper is given in Table 1, while model formulations are 

summarized in Table 2. 

The following mixed integer linear programming model assigns tasks (denoted by index 

i=1,…, I) to workstations (j=1,…, J), considering task precedence relations. The objective 

is to minimize the makespan (M) of the production of a defined number of parts (N). Task 

time progressively decreases as a consequence of the accumulated learning. 𝑡𝑖𝑛 expresses 

the time necessary to execute task i in the nth repetition. In this model, we assume that task 

execution time decreases exponentially with the number of repetitions according to the 

Wright exponential learning curve (𝑡𝑖𝑛 = 𝑡𝑖,1𝑛𝑏) [6].     

First, the minimum feasible workload range is calculated without learning to minimize 

the difference between the minimum and maximum workload of stations. This is described 

by objective (2) and constraints (3), (4), (8) in Table 2. As per constraint (3), each task must 

be allocated to a specific station. Constraint (4) ensures that all task precedence relations 

are satisfied. Constraint (8) defines the objective value function as the maximum workload 

differences between stations.  

The maximum workload range is provided by the allocation that minimizes the 

makespan when learning is considered and with no restriction on the allowed range. The 

second model minimizes the makespan with objective function (1) and applying constraints 

(3), (4), (5), (6), (7). A batch with size N on a defined number of stations J is produced in 

J+N-1 cycles. In the first J-1 cycle, the first part will enter the station with the same cycle 

number as the station (in the first cycle to station 1, in the second cycle to station 2, and so 

on). Starting from cycle J, a new piece is completed in each cycle, as long as the required 

N cycles are finished, that is, the required batch size N is completed. In the last J-1 cycles, 

gradually, all stations will stop working, and the last J-1 pieces leave the stations step by 

step. The cycle time of each cycle is changing, and the bottleneck station may also change. 

The cycle time in each cycle equals the total execution time of tasks assigned to the 

bottleneck station of the cycle. Constraint (5) describes the cycle times during the run-up 

period when no part is completed yet, and the first part is on stations s<J. According to 

constraint (6), the cycle time when completing the nth part is greater than the total execution 
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time of tasks at any of the stations at that time, considering again that the execution time at 

each station depends on the number of parts currently finished at that station. The makespan 

or the total production time will be the sum of the cycle times related to the J+N-1 cycles 

as described in constraint (7). 

Finally, in the third model, objective value function (1) and constraints (3), (4), (5), (6), 

(7), and (8) describe the model for minimizing the makespan when there is a restriction on 

the workload range. 

 
Table 1. Summary of notation applied in the model. 

 

Indices: 

i, k - index of tasks (i=1…, I; k=1…, I), 

j, s - index of workstations (j=1,…, J; s=1,…, J), 

n - index of parts produced (n=1,…, N). 

Parameters: 

b - parameter of the exponential learning curve expressing learning, 

I - number of tasks, 

J - number of workstations, 

N - number of parts produced, 

tin - time necessary to execute task i in the nth repetition. 

Sets: 

Pi - set of indices of those tasks which must be finished before task i is started. 

Decision variables: 

xij - 0-1 decision variable; if it is equal to 1, then task i is assigned to station j, 

   otherwise, it is equal to 0, 

us - cycle time when executing the first part on station s, where s < J, 

vn - cycle time when completing part n, 

M - makespan or total production time, 

R - range of station workloads. 
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Table 2. MILP models for minimizing the makespan with learning. 

3. Practical illustration of the presented model 

3.1 Problem description 

To illustrate the performance of the proposed model, let us consider a well-known 

benchmark problem from Scholl (1993) named by Gunther [5]. The precedence graph of 

tasks and the task times (in minutes) of the problem are given in Fig. 1. 

Fig. 1.  Gunther precedence graph. 

𝑀𝑖𝑛(𝑀) (1) 

𝑀𝑖𝑛(𝑅) (2) 

∑ 𝑥𝑖,𝑗 = 1

𝑗

  ∀ 𝑖 (3) 

∑ 𝑗(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) ≥ 0

𝑗

   ∀ (𝑖, 𝑘)| 𝑘 ∈ 𝑃𝑖 (4) 

𝑢𝑠 ≥ ∑ 𝑥𝑖,𝑗 ∗

𝑖

𝑡𝑖,(𝑠−𝑗+1)   ∀ (𝑗, 𝑠)|𝑠 < 𝐽, 𝑠 − 𝑁 + 1 ≤  𝑗 ≤ 𝑠 (5) 

𝑣𝑛 ≥ ∑ 𝑥𝑖,𝑗 ∗

𝑖

𝑡𝑖,(𝑛−𝑗+𝐽)   ∀ (𝑗, 𝑛)|1 ≤ 𝑛 + 𝐽 − 𝑗 ≤ 𝑁 (6) 

𝑀 = ∑ 𝑣𝑛

𝑛

+ ∑ 𝑢𝑠

𝑠<𝐽

 (7) 

𝑅 ≥ ∑ 𝑥𝑖,𝑗 ∗

𝑖

𝑡𝑖,1  − ∑ 𝑥𝑖,𝑠 ∗

𝑖

𝑡𝑖,1 ∀ (𝑗, 𝑠) (8) 
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The model presented in Table 2 is applied to determine the optimal makespan of the 

benchmark problem within a specific initial workload difference range when the learning 

effect is considered. We implemented the algorithm and generated the results using the 

AIMMS Prescriptive Analytics Platform [4]. The MILP model is solved with CPLEX 

version 12.7.1. 

The effect of learning on the optimal makespan is analyzed using the Wright LC model 

[5]. For the analysis, we selected a learning rate (L) of 0.85 (L=0.85), corresponding to fast 

learning, assuming that the learning rate is the same for all the stations. Quantity-dependent 

task execution times are precalculated and rounded to 2 decimals. For illustration purposes, 

a line with four stations (J=4) and a batch size of 50 units (N=50) were selected; however, 

this approach can be valid for any line length and batch size. 

3.2 Analysis of the optimal makespan and workload distribution  

Table 3 summarizes the initial workload per station, workload difference range, initial 

workload differences, total workload differences in minutes and percentages, and the 

corresponding optimal makespans obtained for the selected learning rate (L=0.85), line 

length (J=4), and quantity (N=50). 

Table 3. Results summary 

Initial workload per station (mn)      

Station 

1 

Station 

2 

Station 

3 

Station 

4 

Initial workload 

difference  

range (mn) 

Initial 

workload 

difference 

(mn) 

Total 

workload 

difference 

(mn) 

Total 

workload 

difference 

(%) 

Optimal 

Makespan 

(mn) 

121.00 121.00 121.00 120.00 

[1,5] 

1.00 25.51 0.83% 3426.95 

122.00 121.00 120.00 120.00 2.00 51.00 1.64% 3424.98 

122.00 121.00 121.00 119.00 3.00 76.50 2.46% 3415.85 

122.00 122.00 121.00 118.00 4.00 102.10 3.28% 3411.42 

123.00 122.00 120.00 118.00 5.00 127.60 4.07% 3409.39 

The results indicate that the lowest initial workload difference is 1 minute, corresponding 

to a total workload difference of 25.51minutes (0.83%) and an optimal makespan of 

3426.95 minutes. The results also show that the lowest optimal makespan is 3409.39 

minutes, corresponding to an initial workload difference of 5 minutes and a total workload 

difference of 127.69 minutes (4.07%). These two points specify the initial workload 

difference range of 1 to 5. Going below this range does not provide any feasible solution, 

and going above this range is not beneficial as it only generates solutions for a higher 

workload difference and makespan. As Table 2 shows, five possible solutions are possible 

within the obtained range [1,5]. 

The results demonstrate that the optimal makespan decreases as the initial workload 

difference and total workload increase. A shorter makespan implies a shorter production 

time and faster delivery time, with some operators working more than others. On the other 

hand, a minimal workload difference between the stations and operators implies an even 

workload distribution between the workers and, therefore, a reduced risk of workers 
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overload and a smoother production flow with a longer makespan. The decision rests with 

the managers in making a compromise between the workload distribution and makespan, 

depending on their objectives. 

4. Conclusion 

In this paper, a MILP model is formulated and applied when the makespan and workload 

difference between operators is minimized in the presence of learning. The MILP model 

developed in section 2 is illustrated with a benchmark problem in section 3. The effect of 

learning is characterized using the Wright exponential learning model, assuming that the 

learning rate is the same for all the stations. The model, however, can be extended to any 

learning curve model or empirical data. In the illustrative example, a learning rate of 0.85, 

a batch size of 50 units, and a four-station line were chosen. The approach, however, can be 

valid for any learning rate, line length, and batch size.  

The present research investigates the evolution of the optimal makespan within a specific 

workload difference range. As a result, the possible optimal makespans, the corresponding 

initial workloads per station, and total workload differences within the specified range were 

provided. The findings indicate that the optimal makespan decreases as the difference 

between the initial and total workloads increases, highlighting a tradeoff between the 

optimal makespan and workload distribution. The findings can be valuable for managers as 

they can select the workload distribution and corresponding makespan according to their 

objectives. 
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Quantifying the impact of outlier management techniques 

on digital country rankings 

Zoltán Bánhidi1, Imre Dobos1 

1 Dept. of Economics, Budapest University of Technology and Economics, Budapest, Hungary 
banhidi.zoltan@gtk.bme.hu 

Abstract. The objective of our study is to create rankings of European Union 

(EU) member states based on objective weights that provide a comprehensive 

overview of their digital and economic development. We also aim to examine 

the impact of outlier management techniques, such as winsorizing, on these 

rankings. To accomplish this, we utilized a macro-level cross-sectional dataset 

that comprises the principal dimensions of the Digital Economy and Society 

Index, as published by the European Commission, along with the GDP per 

capita and AIC indicators from economic statistics. In one version of the 

dataset, extreme values in the macroeconomic data were treated with 

winsorizing, while in another version, they were left untreated. The efficiency 

indicators were used to rank EU Member States based on the synthesis of the 

digital and economic dimensions using the DEA/MaxMin model from decision 

theory. The rankings aim to characterize the digital-economic strengths of EU 

countries and the digital divide found within the EU, as well as evaluate the 

impact of outlier management. 

Keywords: Winsorizing, DEA, DESI. 

1 Introduction 

The relationship between digital and economic development is complex and 

bidirectional. Digital transformation refers to the process by which information and 

communication technologies (ICTs) increasingly permeate the way the economy and 

society (businesses, governments, and citizens) function and live. Economic 

development, in turn, is linked to GDP growth, employment growth, and 

improvements in living standards, which in modern economies are closely linked to 

and interact with digital transformation. 

Reliable measurement of the various aspects of digital development is crucial for 

governments to design and implement effective digital strategies that drive digital 

transformation. A sound measurement system can identify the areas with the greatest 

impact on digital transformation, as well as the gaps and weaknesses where 

government intervention and incentives are most needed.  

Although the European Commission’s Digital Economy and Society Index (DESI) 

[1], first published in 2014, has been the subject of intense expert debate since its 

inception, it is one of the most important and frequently cited indicators for 
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characterizing the process of digitization in Europe. However, it is important to note 

that there are identified problems with the survey methodology and data collection 

systems on which it is based. Expert debates on this topic have primarily taken place 

in policy workshops and forums with EU institutions and national governments, but 

the database has also been utilized in academic research, as seen in the works of 

Kotarba [2], Moroz [3], Giannone and Santaniello [3] and Laitsu et al. [4] etc. 

In this study, we utilize the MaxMin variant of the Data Envelopment Analysis 

method (DEA/MaxMin) from decision theory, to analyze the five primary dimensions 

of the 2020 edition of DESI. Our cross-sectional dataset includes country-level data 

from well-known macroeconomic indicators such as AIC and GDP per capita from 

Eurostat. The objective is to provide a comprehensive overview of the digital 

economic strengths of the European Union (EU) Member States. Our analysis was 

conducted for the 28-member EU (the EU-28 group of countries) prior to 'Brexit' 

since the datasets used still included the UK leaving the EU in 2020. (The 2020 DESI 

report was based on 2019 baseline data.) 

In addition, we aim to analyze the effect of outlier management techniques, such as 

winsorizing, on these rankings. To achieve this, we utilize two versions of our dataset. 

In one version, the extreme values in the raw AIC and GDP per capita data were 

treated with winsorizing, while in the other version, they were left untreated. 

Table 1 provides an overview of our variables (DESI dimensions and 

macroeconomic indicators), along with their shares in the original DESI composite 

index (which does not include GDP and AIC) and a brief description summarizing 

their content. 

Table 1. The main dimensions of the DESI 2020 and their weights, as recommended by the 

European Commission, supplemented by the GDP/cap and AIC macroeconomic indicators. 

Dimensions Weights Description 

Connectivity (CNC) 25% 
Fixed and mobile broadband networks 

and prices 

Human Capital (HUC) 25% 
Basic and advanced digital skills, digital 

literacy 

Integration of Digital 

Technology (IDT) 
20% 

Digitization of enterprises and e-

commerce 

Digital Public Services 

(DPS) 
15% E-government services

Use of Internet (UOI) 15% 
Citizens' online content consumption, 

communication and transactions 

Gross Domestic 

Product (GDP) 
N/A 

The value of total final output of goods 

and services produced by the economy 

Actual Individual 

Consumption (AIC) 
N/A 

A measure of all goods and services 

actually consumed by households 
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2 Methodology 

Our research employs a decision theoretic method to investigate digital and economic 

development and rank the countries in our dataset, namely the DEA/MaxMin. We 

also use outlier management (winsorizing) to prepare our data for analysis. 

DEA is a mathematical programming method used to measure the relative 

efficiency of decision-making units (DMUs) and can also serve as a ranking method. 

Its main objective is to find the weight vector that yields the maximum efficiency for 

each decision unit. In the original DEA model (DEA/CCR, Charnes-Cooper-Rhodes), 

efficiency is measured by a quotient-type indicator with the weighted value of the 

output criteria in the numerator and the weighted value of the inputs in the 

denominator. In contrast to DEA/CCR, the DEA model we use only considers output 

criteria, the inputs are assumed to be constant (specifically, equal to one). This 

approach is referred to as DEA Without Explicit Input (DEA/WEI) in the literature. 

Additionally, the DEA/CCR model assigns separate weights to each DMU, which is 

not desirable in our case due to fairness concerns, among other reasons. The DEA 

Common Weights Analysis (DEA/CWA) approach that we employ addresses this 

issue by utilizing uniform weights to rank all DMUs, i.e., the EU members states in 

our dataset. 

The vector of possible weights of the DEA/MaxMin model can be determined by 

the system of equations (1) to (2). Inequalities (1) shows the upper limit of DEA 

efficiency, i.e. one, while inequality (2) defines the non-negativity of weights. The 

number of decision-making units is p, and vector yj comprises the values of the jth 

decision making unit, in this case country. The vectors yj can be summarized in the Y 

matrix. Vector u is the DEA weights. 

u·yj  1; j = 1,2,...,p (1) 

u  0. (2) 

F(u) = min
1𝑗𝑝 

𝐮 · 𝒚𝒋 → max (3) 

The DEA efficiency of the jth DMU (in our case, jth EU member state) for a given 

weight u is equal to Ej (u) = u·yj, and the efficiencies of all DMU with common 

weight vector u in vector form is equal to F(u) = min
1𝑗𝑝 

𝐮 · 𝒚𝒋 .

In this methodology section, we should also briefly describe the methodology for 

managing outliers and the factors that make this necessary. Multinational companies' 

tax optimization decisions in Luxembourg and Ireland may skew macroeconomic 

data, particularly the GDP per capita indicator. Therefore, the GDP per capita figures 

for Luxembourg and Ireland might not accurately reflect the true strength of their 

respective economies. A study on the Central Bank of Ireland's website, authored by 

the bank’s former governor, acknowledges the distortion present in Ireland [5]. 

For this reason, we have decided to apply outlier management using the 

winsorization method. Winsorization performs a symmetric "truncation", i.e. the 

values rounded from the bottom and the top are increased from the bottom and 
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decreased from the top by the same number. The method assumes that the same 

number of pieces of data are changed in the data distribution, and that the values 

above and below the specified upper and lower values are kept constant. This means 

that if we perform a 90 percent winsorization, as we did, we replace the observations 

in the bottom 5 percent with one constant and the values in the top 95 percent with 

another constant. 

The formula applied to the data is given by equation (4): 

𝑥⌊(𝑛−1)𝑝+1⌋ + [(𝑛 − 1)𝑝 + 1 − ⌊(𝑛 − 1)𝑝 + 1⌋](𝑥⌊(𝑛−1)𝑝+1⌋+1 − 𝑥⌊(𝑛−1)𝑝+1⌋) (4) 

Countries whose AIC and/or GDP values have been treated with winsorization 

because they are deemed to be too high or too low are highlighted in Table 2, 

indicating a reduction of the high value for Luxembourg, Ireland, and Germany and 

an increase for Bulgaria and Croatia. The GDP and AIC data of the other countries, as 

well as the data related to the DESI dimensions, were left untreated. 

Table 2. The original and winsorized GDP and AIC values (for the treated countries) 

Country GDP/cap PPS 

(EU = 100) 

AIC/cap PPS 

(EU = 100) 

GDP/cap PPS 

(winsorized) 

AIC/cap PPS 

(winsorized) 

Bulgaria 53 59 65.9 66.3 

Croatia 65 66 65.9 66.3 

Germany 121 123 121.0 121.5 

Ireland 191 97 172.4 97.0 

Luxembourg 261 135 172.4 121.5 

3 Results 

In Table 3, we present the joint DEA/MaxMin weights obtained on the raw (“basic”) 

data as well as those obtained by calculations on the winsorized data. As can be seen 

from the table, the UOI and IDT dimensions do not play a significant role in 

determining DEA efficiency or rankings in either version, but the weights of the other 

dimensions show differences depending on the version. Although the DPS dimension 

plays the largest role in determining efficiency in both models, the role of AIC is 

equally important in the winsorized model. In both models, the HUC dimension also 

plays a (smaller) role, but CNC plays a role only in the base model, while GDP plays 

a role only in the winsorized model. The numbers in the table were rounded to three 

decimal places, but the numbers in gray are equal to zero even without rounding. 

Table 3. The weights with and without winsorizing 

Weights CNC HUC UOI IDT DPS GDP AIC 

Basic 0.001 0.001 0.000 0.000 0.005 0.000 0.003 

Winsorized 0.000 0.002 0.000 0.000 0.004 0.001 0.004 
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Once the weights have been determined, we proceed to the determination of the 

efficiencies and the ranking itself, which is presented in two versions. As can be 

observed from Table 4, winsorizing did not result in a decline in the rankings for 

Luxembourg and Ireland, even though their GDP values (and Luxembourg’s AIC 

value) were reduced. On the contrary, while the former maintained their lead, Ireland 

advanced four places by incorporating GDP into the weighting.  

Table 4. The DEA/MaxMin efficiencies and rankings with and without winsorizing 

Countries Basic data Ranking with 

basic data 

Winsorized 

data 

Ranking with 

wins. data 

Luxembourg 1.000 1 1.000 1 

Denmark 1.000 1 1.000 1 

Finland 1.000 1 1.000 1 

Austria 0.946 6 0.975 4 

Netherlands 0.958 4 0.972 5 

Sweden 0.955 5 0.963 6 

Germany 0.898 7 0.927 7 

Ireland 0.884 12 0.926 8 

United Kingdom 0.889 9 0.916 9 

Belgium 0.885 11 0.909 10 

France 0.885 10 0.891 11 

Spain 0.894 8 0.849 12 

Estonia 0.865 13 0.818 13 

Lithuania 0.841 14 0.809 14 

Malta 0.825 15 0.798 15 

Italy 0.784 18 0.783 16 

Cyprus 0.770 19 0.774 17 

Portugal 0.792 17 0.757 18 

Slovenia 0.762 20 0.744 19 

Czechia 0.725 21 0.731 20 

Latvia 0.802 16 0.723 21 

Poland 0.724 22 0.693 22 

Slovakia 0.643 24 0.632 23 

Greece 0.609 27 0.616 24 

Hungary 0.649 23 0.615 25 

Croatia 0.622 26 0.611 26 

Romania 0.623 25 0.610 27 

Bulgaria 0.609 28 0.610 28 
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Apart from Ireland, the two countries with the most significant changes in ranking 

(due to the change in vector weights) are Latvia and Spain, whose data remained 

unchanged after the winsorization, with a drop of five and four positions, respectively. 

The Pearson correlation coefficient between the DEA scores is 0.981, indicating that 

winsorization of the data has minimal impact on the order obtained by the underlying 

data. The rank-to-rank correlation is measured by Kendall's tau-b, with a value of 

0.884, also demonstrating a high correlation. The two correlations yield comparable 

results, indicating that the treatment of outlier data does not significantly affect this 

sample. Therefore, it is not worthwhile to perform winsorization on the orders. 

4 Conclusions 

In our study, we employed objective weights and models based on the statistical 

characteristics of our dataset, which encompassed digital and economic dimensions. 

These models were utilized to create country rankings that we believe provide a 

comprehensive picture of the digital economic strengths and development of the 

European Union (EU) Member States. Based on the five digital indicators (DESI 

dimensions) and two macro indicators (AIC, GDP/capita), we established rankings for 

the EU-28 (including the UK) using the DEA/MaxMin method.  

The weights obtained from the raw and winsorized data exhibited minimal 

discrepancy from one another, yet exhibited notable divergence from the weights set 

by the European Commission. Nevertheless, the resulting country rankings remained 

largely consistent with one another and with the original rankings. In the winsorized 

rankings, only a few countries show noticeable differences in their ranking, which 

(except for Ireland) were not necessarily the countries whose outliers were adjusted. 

Overall, therefore, we can conclude that the main effect of winsorization on the 

rankings is through the modification of the DEA/MaxMin weights. However, even 

this effect is relatively minor. 

References 

1. Digital Economy and Society Index 2020, https://digital-

strategy.ec.europa.eu/en/library/digital-economy-and-society-index-desi-2020, last 

accessed 2024/04/14 

2. Kotarba, M.: Measuring digitalization–key metrics. Foundations of Management 9(1), 

123–138 (2017). 

3. Moroz, M.: The level of development of the digital economy in Poland and selected 

European countries: a comparative analysis. Foundations of Management 9(1), 175–190 

(2017). 

4. Giannone, D., Santaniello, M.: Governance by indicators: the case of the Digital Agenda 

for Europe. Information, Communication & Society 22(13), 1889–1902 (2019). 

5. Laitsou, E., Kargas, A., Varoutas, D.: Digital competitiveness in the European Union era: 

The Greek case. Economies, 8(4), 85 (2020). 

6. Honohan, P.: Is Ireland really the most prosperous country in Europe?. Economic Letters 1

(2021). 

15



Constraint Programming formulation for a real-world 

final exam scheduling problem with parallel sessions 

based on short time intervals 

László Kálmán Trautsch1 and Bence Kovari1 

1 Department of Automation and Applied Informatics, Faculty of Electrical Engineering and 

Informatics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 

Budapest, Hungary 
trautschl@edu.bme.hu 

Abstract. Scheduling final exams is subject to various requirements that differ 

by country and university. A range of personal, institutional, and regulatory 

factors should be considered at the same time for creating an optimal schedule. 

We propose a Constraint Programming model for scheduling final examinations 

at the Department of Automation and Applied Informatics, Budapest University 

of Technology and Economics. The requirements of this scheduling problem 

regard an examination period which is divided into 5-minute intervals. 

Heterogeneous student groups and instructors with various roles are scheduled 

to parallel sessions based on these time intervals. The cost function is defined 

by multiple types of constraints, such as balancing the workload, optimizing 

start and end times of sessions and breaks, and penalizing gaps in the schedules 

of instructors. We present the formulation of the various complex requirements 

of final exam scheduling and demonstrate the results of applying a Constraint 

Programming solver to our model to find feasible solutions for a real-world 

scheduling problem involving 101 students. 

Keywords: Constraint Programming, Scheduling, Final exam scheduling 

1 Problem description 

Final exam scheduling is a combinatorial optimization problem in which various 

constraints restrict the search space and the optimization is based on multiple, often 

conflicting objectives. The task of our addressed problem is to schedule exams during 

the examination period which is divided into short time intervals. Parallel 

examination is enabled with possible assignments to different rooms. The exams 

during a day in a room should form consecutive sessions, with the lunch break being 

the only gap during these blocks of exams. Instructors should be assigned to the 

exams to fulfill different roles. Exams are heterogeneous which means that their 

length and the required instructor roles can differ. 

The Constraint Programming formulation of final exam scheduling is presented 

through an actual complex problem of the Department of Automation and Applied 
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Informatics, Budapest University of Technology and Economics. For the sake of 

brevity only the more important parameters, variables, and constraints are introduced. 

The actual formulation of the problem was done using other similar restricting 

constraints and an extended objective function. 

The main idea to reduce the number of variables and constraints of the problem is 

to use exam slots and formulate the constraints based on these slots whenever 

possible, instead of the many 5-minute time intervals of the planning horizon. The 

maximum number of exams that every continuous session of exams can contain is 

specified for the problem, therefore that many exam slots should be created for every 

block of exams on each day and each room. An exam slot can be empty or exactly 

one exam could be assigned to it. The proposed Constraint Programming model is 

presented in this section. 

1.1 Parameters 

• D: Set of days 

• T: Set of 5-minute intervals in the planning period 

• R: Set of rooms 

• E: Set of exams, one exam corresponding to each 

student 

• I: Set of instructors 

• MaxB: Number of blocks that can be scheduled to a room 

in a day 

• B: Set of possible exam blocks in the planning 

period considering every room 

• MaxS: Number of exam slots that can be scheduled to 

a block 

• S: Set of possible slots for exams in the planning 

period considering every room. The slots are 

counted starting from number 1. 

• 𝐵𝑠: Block of slot s 

• 𝑃𝑠: Set of the slots that can be scheduled in parallel 

with slot s 

• 𝑃𝑆𝑡𝑎𝑟𝑡𝑠: Set of possible start intervals of slot s 

• 𝐴𝑙𝑙𝑜𝑤𝑒𝑑𝐸𝑛𝑑𝑏: Set of allowed end intervals of block b, for which 

no soft constraint is violated 

• 𝑙𝑒𝑛𝑔𝑡ℎ𝑒 ∈ {8,9}: Length of exam e, which is based on the major 

of the corresponding student 

• C: Set of soft constraints 

• 𝑤𝑐: Weight corresponding to soft constraint c 

• U: Set of workload upper limit soft constraints 

• L: Set of workload lower limit soft constraints 

• 𝑆𝑡𝑎𝑟𝑡𝐶: Set of session start time soft constraints 

• EndC: Set of session end time soft constraints 

• ℎ𝑟,𝑖: Indicator whether instructor i can hold role r 
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• ℎ𝑟,𝑒: Indicator whether exam e needs role r 

• 𝑑𝑖: Workload demand for instructor i 
• 𝑝𝑢: Upper limit of workload constraint u 

• 𝑝𝑙: Lower limit of workload constraint l 
• startL𝑠𝑐: Minimum start interval of session start time 

constraint sc 
• endL𝑒𝑐 : Maximum end interval of session end time 

constraint ec 

1.2 Decision variables 

• 𝑥𝑠,𝑒 ∈ {0,1}: 1 if exam e is assigned to slot s, 0 otherwise 

• 𝑥𝑠,𝑖 ∈ {0,1}: 1 if instructor i is assigned to slot s, 0 otherwise 

• 𝑠𝑡𝑎𝑟𝑡s ∈ 𝑃𝑆𝑡𝑎𝑟𝑡𝑠: Start interval of slot s 

• 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 ∈ {0,8,9}: Length of slot s 
• 𝑒𝑛𝑑𝑏 ∈ ℤ≥0: End interval of block b 
• 𝑖𝑠𝐺𝑎𝑝𝑠,𝑖 ∈ {0,1}: 1 if instructor i has a gap in the schedule starting 

from slot s, 0 otherwise 

• 𝑤𝑜𝑟𝑘𝑙𝑎𝑑𝑉𝑙,𝑖 ∈ {0,1}: 1 if the workload of instructor i violates the 

workload limit soft constraint l, 0 otherwise 

• 𝑠𝑡𝑎𝑟𝑡𝑉𝑠𝑐,𝑏 ∈ {0,1}: 1 if the start time of block b violates the session 

start time soft constraint sc, 0 otherwise 

• 𝑒𝑛𝑑𝑉𝑒𝑐,𝑏 ∈ {0,1}: 1 if the end time of block b violates the session 

end time soft constraint ec, 0 otherwise 

1.3 Constraints 

Each slot can hold maximum one exam: 

∑ 𝑥𝑠,𝑒𝑒∈𝐸 ≤ 1    ∀𝑠 ∈ 𝑆 (1) 

Each exam is scheduled to exactly one slot: 

∑ 𝑥𝑠,𝑒𝑠∈𝑆 = 1    ∀𝑒 ∈ 𝐸 (2) 

The next slot of a block starts after the previous one ended: 

𝑠𝑡𝑎𝑟𝑡𝑠+1 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 + 𝑠𝑡𝑎𝑟𝑡𝑠   ∀𝑠 ∈ 𝑆 ∶ 𝑠 𝑚𝑜𝑑 𝑀𝑎𝑥𝑆 > 0 (3) 

The block ends when its last slot ends: 

𝑒𝑛𝑑𝑏 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 + 𝑠𝑡𝑎𝑟𝑡𝑠    ∀𝑠 ∈ 𝑆 ∶ 𝑠 𝑚𝑜𝑑 𝑀𝑎𝑥𝑆 = 0 , 𝑏 =  𝐵𝑠 (4) 

A slot has the same length as the exam scheduled in it: 

¬𝑥𝑠,𝑒 ⋁  (𝑙𝑒𝑛𝑔𝑡ℎ𝑠 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑒)    ∀𝑠 ∈ 𝑆 , ∀e ∈ 𝐸 (5) 

18



The length of a slot is 0 when it holds no exam: 

(⋁ 𝑥𝑠,𝑒e ∈𝐸 ) ⋁  (𝑙𝑒𝑛𝑔𝑡ℎ𝑠 = 0)                  ∀𝑠 ∈ 𝑆 (6) 

At least one instructor is scheduled for each role of the exam held in a slot: 

¬𝑥𝑠,𝑒  ⋁ ¬ℎ𝑟,𝑒  ⋁ (𝑥𝑠,𝑖 ⋀ ℎ𝑟,𝑖)i ∈𝐼                 ∀𝑠 ∈ 𝑆 , ∀e ∈ 𝐸 , ∀r ∈ 𝑅 (7) 

1.4 Objective function 

The objective function is the minimization of violations of the various constraints, 

weighted by the corresponding parameters. ec is the expression for the number of 

violations of a given constraint. 

𝑚𝑖𝑛 ∑ 𝑒𝑐𝑐∈𝐶 ∗ 𝑤𝑐 (8) 

The basic idea of penalizing gaps in the schedules of instructors is as follows: If an 

instructor is scheduled to an exam slot, then that slot is either the start of a gap, or the 

instructor is also scheduled to another slot that begins immediately after the current 

slot ends (either in the same block or in a parallel section in a different room), or the 

slot ends at an allowed time: 

¬𝑥𝑠,𝑖 ⋁ 𝑖𝑠𝐺𝑎𝑝𝑠,𝑖 ⋁ 𝑥𝑠+1,𝑖 ⋁ (𝑥𝑠̂,𝑖  ⋀  (𝑠𝑡𝑎𝑟𝑡𝑠̂𝑠̂∈𝑃𝑠
= 𝑠𝑡𝑎𝑟𝑡𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑠))

⋁  (𝑠𝑡𝑎𝑟𝑡𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 =  𝐴𝑙𝑙𝑜𝑤𝑒𝑑𝐸𝑛𝑑𝑏)

∀i ∈ I, ∀s ∈ S ∶ 𝑠 𝑚𝑜𝑑 𝑀𝑎𝑥𝑆 > 0 , 𝑏 =  𝐵𝑆 (9) 

The last slot of a block can also start a gap in the schedule of an instructor: 

¬𝑥𝑠,𝑖 ⋁ 𝑖𝑠𝐺𝑎𝑝𝑠,𝑖 ⋁ (𝑥𝑠̂,𝑖  ⋀  (𝑠𝑡𝑎𝑟𝑡𝑠̂𝑠̂∈𝑃𝑠
=  𝑒𝑛𝑑𝑏)) ⋁  (𝑒𝑛𝑑𝑏 =  𝐴𝑙𝑙𝑜𝑤𝑒𝑑𝐸𝑛𝑑𝑏)

∀i ∈ I, ∀s ∈ S ∶ 𝑠 𝑚𝑜𝑑 𝑀𝑎𝑥𝑆 = 0, 𝑏 =  𝐵𝑆 (10) 

The number of gap variables is minimized by the objective function, using the 

expression for the number of violations: 

𝑒𝑔𝑎𝑝 = ∑ ∑ 𝑖𝑠𝐺𝑎𝑝𝑠,𝑖𝑖∈𝐼𝑠∈𝑆 (11) 

The workload demand for each instructor is the maximum of their role demands: 

𝑑𝑖 = 𝑀𝑎𝑥𝑟∈𝑅  (
∑ ℎr,𝑒𝑒∈𝐸

∑ ℎr,𝑗𝑗∈𝐼
∶ ℎ𝑟,𝑖)        ∀i ∈ I (12) 

An instructor should be scheduled to fewer exam slots than the limit of a given 

workload demand, or that constraint is violated: 

(∑ 𝑥𝑠,𝑖𝑠∈𝑆 ≤ 𝑑𝑖 ∗ 𝑝𝑢) ⋁  𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑉𝑢,𝑖   ∀𝑖 ∈ 𝐼 , ∀u ∈ 𝑈 (13) 
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An instructor should be scheduled to more exam slots than the limit of a given 

workload demand, or that constraint is violated: 

(∑ 𝑥𝑠,𝑖𝑠∈𝑆 ≥ 𝑑𝑖 ∗ 𝑝𝑙) ⋁  𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑉𝑙,𝑖    ∀𝑖 ∈ 𝐼 , ∀l ∈ 𝐿 (14) 

The number of workload violations is minimized by the objective function, using 

different expressions for each upper and lower limit: 

𝑒𝑙 = ∑ 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑉𝑙,𝑖  𝑖∈𝐼  ∀l ∈ (𝐿 ∪ 𝑈) (15) 

A constraint regarding the start time of a block is violated when the first slot of the 

block starts too early: 

(𝑠𝑡𝑎𝑟𝑡𝑠 ≥ 𝑠𝑡𝑎𝑟𝑡𝐿𝑠𝑐) ⋁  𝑠𝑡𝑎𝑟𝑡𝑉𝑠𝑐,𝑏      

∀sc ∈ 𝑆𝑡𝑎𝑟𝑡𝐶 , ∀𝑠 ∈ 𝑆 ∶ 𝑠 𝑚𝑜𝑑 𝑀𝑎𝑥𝑆 = 1 , 𝑏 =  𝐵𝑠 (16) 

A constraint regarding the end time of a block is violated when the block ends later 

than allowed: 

(𝑒𝑛𝑑𝑏 ≤ 𝑒𝑛𝑑𝐿𝑒𝑐) ⋁  𝑒𝑛𝑑𝑉𝑒𝑐,𝑏   ∀ec ∈ 𝐸𝑛𝑑𝐶 , ∀𝑏 ∈ 𝐵 (17) 

The number of start and end time violations are minimized similarly to the workload 

constraints, using dedicated expressions. These constraints are also used to optimize 

the start and end times of breaks between exam sessions. 

𝑒𝑠𝑐 = ∑ 𝑠𝑡𝑎𝑟𝑡𝑉𝑠𝑐,𝑏 𝑏∈𝐵  ∀sc ∈ 𝑆𝑡𝑎𝑟𝑡𝐶 (18) 

𝑒𝑒𝑐 = ∑ 𝑒𝑛𝑑𝑉𝑒𝑐,𝑏 𝑏∈𝐵  ∀ec ∈ 𝐸𝑛𝑑𝐶 (19) 

2 Results 

The presented Constraint Programming model was tested using CP-SAT solver [1] in 

a Python implementation. The dataset used for testing was an actual problem of final 

exam scheduling, containing information about a heterogeneous group of 101 students 

and 82 instructors during a 7-day planning period with two rooms for parallel 

scheduling. The test was executed for 7 hours of runtime, using a machine with an i5 

@ 3.30 GHz processor and 16GB of RAM. During the experiment, 362 different 

feasible solutions were found. The initial upper bound of the cost function calculated 

by the solver was 84983, the final lower bound was 10. The first feasible solution 

found had a cost of 10205, and the best had a cost of 1179. The decrease in the cost of 

feasible solutions during the runtime can be seen in Fig. 1. 
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Fig. 1. The cost decrease of feasible solutions found by the solver during the runtime. 

The results show that using our formulation the Constraint Programming solver 

was able to find feasible solutions for the presented complex real-world final exam 

scheduling problem. 
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